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Abstract

Genetic algorithms model the natural processes of information inheritance and selective
pressure. As general domain independent tools, they were shown to be applicable to a
number of numerical optimization problems, but the applications are often limited by
constraints. In this paper we show that appropriately enhanced genetic algorithms can
be effectively used to solving the complex, multi-dimensional, and highly constrained
problem of statistical functional estimation. Our approach deals with the constraints by
utilizing them to reduce the search space and defining only operators closed in the reduced
space. We describe here the algorithm and present few experimental results.

1. INTRODUCTION

Recent problem solving ideas tend to lean to utilization of active agents which evolve
by interactions with the environment and the surrounding world rather than by isolated
operations. These ideas are derived from nature where organisms both cooperate and
compete for resources of the environment in the quest for a better adaptation. Because
the nature is highly parallel, these observations led to the design of algorithms that could
both provide the desired characteristics and be applicable to parallel architectures. One
of the most successful such algorithms is the genetic algorithm (GA) [4].

GAs operate by a simulation in which a population of agents compete for survival and
cooperate to achieve a better adaptation. The competition is stochastic but with survival
chances of an agent proportional to its current level of adaptation. This process simulates
the Darwinian selection. Here, the environment is the problem at hand, and the agents
are judged by their quality as potential solutions. The cooperation is achieved by merging
information from few (often two) agents to produce a new one, with the hope of producing
more adapted individuals (a better solution). For this process to be successful, we must
provide for two mechanisms. Firstly, we need a method that ensures that good agents
have higher chances of being selected as donors (parents). This is achieved by the selective
mechanisms which promotes survival of such individuals. Secondly, we must provide
for mechanisms aimed at selecting and merging the information in an intelligent way.
This is achieved by means of crossover operators modeling the natural DNA inheritance.
Mutation operators are aimed at introducing extra variability. Algorithms utilizing these
mechanisms were shown to be very robust and applicable for parallel processing [3].



GAs have been quite successfully applied to a number of problems, but by far they are
famous as numerical optimization algorithms. The reason for this success is that numerical
solutions can be easily represented as artificial agents and that the quality assessment of
such agents is reduced to function evaluation.

A serious problem that arises in such applications is that of processing constraints. A
natural approach is to impose penalties for constraint violations. In other words, a con-
strained problem is transformed into an unconstrained problem by associating a penalty
with all constraint violations and the penalties are included in the function evaluation.
However, though the evaluation function is usually well defined, there is no accepted
methodology for combining it with the penalty [2]. Many improvements have been pro-
posed. For example, a common approach is to start with smaller penalties in order to allow
deeper space exploration, and subsequently tighten them in order to achieve a feasible
solution [7]. However, such approaches are highly problem specific [7, 8] and generally do
not guarantee a feasible solution for highly constrained problems. The penalty approach
is suitable only for weak (non-essential) constraints often present in constraint—based
design problems. Unfortunately, numerical problems normally have strong constraints.
Another approach is to devise special repair algorithms that guarantees that each solu-
tion be moved into the feasible solution space. However, for extensive set of constraints,
this method introduces large computational overhead. Moreover, it does not reduce the
search space to that feasible. Yet another approach is to define the operators so that their
actions are closed in the search space. It is difficult to design such operators for general
uses.

Since the genetic approach is basically an accelerated search of the feasible solution
space, introducing constraints can be potentially advantageous and can improve the be-
havior of the technique by limiting the space to be searched. However, traditional GA
approaches do not use this fact and rather apply techniques aimed at minimizing the
negative effect of such constraints. This, in turn, often increases the search space by al-
lowing some infeasible solutions outside the constrained solution space. In [6] we provided
a general set of operators that are closed in the feasible space for numerical optimization
problems with arbitrary linear constraints. In this paper, we describe a specific appli-
cation of that method to the problem of survival analysis in biostatistics. We start by
presenting the problem and the problem specific method for handling equality constraints
in section 2. In section 3 we present the specific closed operators utilized here to han-
dle the problem specific inequality constraints. Finally, we present some experiments in
section 4.

2. THE STATISTICAL ESTIMATION PROBLEM

In clinical trials, the survival time T of an experimental subject usually follows the
distribution such that, for a given time ¢, the chance that the subject will survive after ¢
is

P(T > 1) =expl= [ (1= A(s) + Ms)e™)ou(s)ds] (1)

In above formula, x takes values either 1 or 0, depending on whether or not the experimen-
tal subject is receiving certain treatment. The function A(¢) is a nondecreasing function



defined on [0, 00), with A(0) = 0 and A(co) = 1. The values of A(¢) reflect the percentage
of the full effect of the treatment achieved at time ¢. Function ¢g(¢) is called controlled
hazard rate and can be a rather arbitrary positive function. Suppose [ is given and the
functions A(t) and ¢y(t) are unknown. One needs to estimate the function A(¢).

The usual parametric approach to the estimation problem is to assume a functional
form for A(¢) so that the function depends on some unknown parameters. Then a “partial
likelihood function” can be defined based on data as a function of those unknown param-
eters. Maximizing the likelihood function will provide estimates for the parameters. A
major difficulty of such approaches is that, in many practical problems, the information
about the function A(¢) is very limited. Therefore, a good form for A(¢) is hard to guess.
The algorithm proposed in this paper provides an alternative, GA—based, approach, which
needs fewer information from the distribution and is rather robust. No knowledge about
the form of A(t) is needed in estimation. We decided to estimate A(¢) by computing

—

discrete points yielding a vector A(t¢), which subsequently may be interpolated.

First, let us observe that, since A(¢) is a nondecreasing function, the following inequal-
ities must hold for kg discretized points: 0 < Ao < -+ < Agp1 < 1.

Since our idea is to use the available equality constraints to reduce the search space,
we are interesting in detection of all such possible constraints. It turns out that a number
of them can be generated. Suppose independent observations from n individuals are
collected. The data consist of the pairs (t;,z;), ¢ = 1,...,n, where t; is the survival time
of the ith individual and z; is his treatment status. The values of the function A(t) can
be estimated at some of the time points ¢; as follows. Suppose T;’s are arranged in the
way so that ¢; < ... < t,. Let

s; = sign (zn:(eﬂxi — e'&”f)) (2)

j=i

In the sequence sy, so, ..., Sp,, consider the subsequences starting with consecutive ‘+’ signs
then following by consecutive ‘—’ signs. We may easily show that, for each k-th sequence,
the following equality constraints must hold: Ay = --- = \,;. Then, we suggest to
remove all these equality constraints by replacing all these A values by a single value 7.
Furthermore, let 7, be the location of the first '+’ sign in the subsequence. Define

Tk-l—l_l

fuln) = 3= {logl1 + (e — 1)] ~log 3[1 + (e — 1)) ®)
and
Pl o) = 3 el ()

assuming that we have kg such sequences. Then, it can be shown that good estimates Ay
of \(T,) will maximize the function F' under the constraint [9]: 0 < g < --- < gy < 1.

In other words, we remove the troublesome equality constraints and, at the same time,
reduce the search space by reducing the number of estimate parameters. Note that ky <
n/2, but experiments show that most often kg &~ n/4. This process constitutes the problem



specific data reduction by removing the detected equality constraints. In addition, for
some specific cases we may detect additional constraints of the form: ny = 0 and 7,1 = 1.
We discuss dealing with these additional equalities after presenting our convex—search—
space—closed operators.

An interpolation of the points (7, t,, ), which may easily be converted to (\;,¢;), will
provide an estimate for A\(¢). This problem is basically a nonlinear programming prob-
lem with linear constrains. Typical algorithms for solving such problems are limited to
functions with small number of variables and the computations become more and more
unreliable when the the number of variables increases. In our application, however, to
obtained adequate estimates for the function A(¢) the number of the variables should be
as large as possible. It is desirable, for example, to have n > 200. Therefore, the usual
algorithms do not provide practical solutions to this problem.

3. THE PROPOSED APPROACH

The methodology we proposed in [6] provides a way of handling strong linear constraints
that is both general and problem independent. Its main idea is to use the equalities to limit
the problem’s dimensionality, and then to use the inequalities to further limit the search
space by providing a set of closed operators to explore the feasible space only. In this prob-
lem of survival analysis, we already have removed the detected equalities, thus reduced the
search space, and are left with the following constraints: 0 < 7y < -+ < -1 < 1.

3.1. Representation

The most often used agent representation, for numerical problems, is binary vector made
of individual genes coding individual variables. A potential problem with this coding is
that distance from the problem space is not preserved in the representation space. This
problem can be avoided by special coding techniques as Grey [1]. In [5] we showed that
a floating point representation also removes the same bias as it also reduces run—to—run
variance and is generally faster without of any precision sacrifice. Therefore, for this
algorithm, we decided to use this representation.

In the floating point representation, each chromosome vector is coded as a vector of
floating point numbers which is of the same length as the sought solution vector. For exam-
ple, assuming a problem of &, variables, a single solution has the form: n = (ng, ..., Mky—1)-
The precision of such an approach depends on the underlying machine, but is generally
much better than that of the binary representation. Of course, we can always extend
the precision of the binary representation by introducing more bits, but this considerably
slows down the algorithm. In addition, the floating point representation is capable of
representing quite large domains (or cases of unknown domains). On the other hand, the
binary representation must trade off the precision and domain size.

3.2. Closed Operators

Our operators are closed in the convex search space. In other words, they are context—
dependent, meaning that the feasible value of 7, gene is restricted to [1,_1, 7,+1], with the
first and the last genes restricted by 0 and 1. We also extensively use dynamic operators,
that is those whose performance is quided by the age of the population [5].

Mutations are quite different from the traditional one with respect to the actual muta-



tion: a gene, being a floating point number, is mutated in a context—dependent range.

e Plain mutation selects a random gene vy, of the chromosome 1!, = (ng, ..., Nk,—1)-
The result is a vector '™ = (ng, ..., Mk, ..., k1), Where 7}, is a random value (with

uniform probability distribution) from the range [nx_1,ngy1]. fk=0o0r k = ky— 1,
then the appropriate boundary is taken to be 0 or 1, respectively.

e Dynamic mutation is the operator designed for fine tuning capabilities aimed
at achieving high precisions [5]. It is defined as follows: if n* = (no, ..., Nk—1) is

the parent and the element 7, is selected for this mutation, the result is a vector

77t+1 = <770a sy U;c, SRR nk0_1>’ with

Me = Mk + A k1 — 1) or g — A(t, mk — 1k—1) selected randomly. (5)

The function A(t,y) returns a value in the range [0, y] such that the probability of
A(t,y) being close to 0 increases as t increases. This property causes this operator
to search the space uniformly initially (when ¢ is small), and very locally at later
stages. We have used the following function:

Alty)=y- (1—-r0"1"), (6)

where r is a random number from [0..1], 7" is the maximal generation number, and
b is a system parameter determining the degree of non—uniformity. Here again, the
used boundary value is 0 or 1 if k£ is 0 or kg — 1, respectively.

e Shift range is designed to adjust a whole range of parameters at a time. This
operator is designed especially for this problem, whose individual genes are so closely
related. It is designed as follows: if 0t = (Do, ... My oy Ty -« -5 Mho—1) 18 selected
as the parent, with randomly selected n,m such that 0 < n < m < [ (what follows
is that 1, < n,,), then the offspring is of the form: n* = (o, ..., n, + 0, ..., Nm +
O,y Mho—1)- 0 is a random value from a feasible range, that is from the range that
will preserve the inequality constraints. This range is easily computed as follows:
d € [Mn-1 — Ny Mms1 — Nm). Again, we deal with the boundary cases separately: if
n = 0 then n,,_; = 0, and if m = kg — 1 then 7,,,1 = 1. Note that the shift amount
can be positive or negative resulting in moving the range in any direction.

e Stretch range is similar to shift range, but it multiplies the selected genes by a
feasible factor: 7' = (Mo, M * Voo sMm * Vs - > Mko—1)- The stretch factor ~ is
taken as a random value from the feasible range: v € ["’;}—;1, %], and can be either
greater or less than one. Here, if n = 0 then 7, 1 = 0, and if m = ky — 1, then

Nm+1 = Nm-

Crossovers are differentiated from mutations by having two parents needed for recom-
bination. We first present the very general crossover operator, which we subsequently
specialize to achieve different types of crossovers. The general crossover is defined as
follows: if n* = (no,...,Mke—1) and v* = (vy,..., k1) are to be crossed, the resulting
offsprings are:



nt+1 :<770:"'777n—17a'77n+(1_a)'yn:"'aa'nm+(1_a')'Vmanm—l-l:"'anko—l)
v =g, v a v+ (L —a) My U+ (1= @) Doy Vit 1 - -+ > Vig 1)

where 0 <n<m <ky—1.

The problem is to find feasible values for a. Calculation of this range is straightforward
when the two constraints that possibly get violated are considered. Let us deal with the
offspring n**!. The constraints that we must deal with are:

a-m+(1—a) vy, >n1and a-n,+ (1 —a) vy < M-

Solving the above, we get the following feasible ranges for different cases of  and v at
locations n, m, shown in table 1. In addition, when n = 0, we must take 7,1 = 0 and
when m = kg — 1, we must take n,,,.; = 1.

Table 1

Feasible ranges for the closed crossover operations.
Case Ny < vy Nm = Vm Nm > Vm
o < Lo S [moo 5] [oomin(S 55 )]
= v (520 o0 (00, 00] (o0, B,
o > v [t ot o) (o o taoiote, 2kl

e Multi—point crossover. The general crossover reduces to a multi—point crossover
when we select a as close to zero as possible from the feasible range, thus allowing
gene exchange. In general, we need an even number of crossover points. However,
for an odd number, we assume the last point to be at the end of the chromosome
m = kyg — 1. For example, we get a one-point crossover when we take n > 0 and
m = kg — 1. To generate crossovers with £ cross—points, we generate k£ random
points on the range [0, ko — 1], we order them, we assume an additional point at
ko — 1 if k is odd, and we sequentially perform [k/2] two—point crossovers, in a
random order on disjoint neighboring points.

e Uniform crossover. The general crossover reduces to the uniform crossover of
DeJong and Spears when we select a as close to zero as possible from the feasible
range, and then perform the multi-point crossover with k = k.

e Arithmetical crossover. The idea of the arithmetical crossover operators is to
combine genes instead of exchanging them. Therefore, we may generate multi-
point arithmetical crossovers by following the ideas of the multi-—point crossover
and selecting a # 0. In particular, when we select a as close to 1/2 as possible from
the feasible range, we will be creating new genes that are averages of the parent
genes. Moreover, when n = 0 and m = ky — 1, we are performing the arithmetical
crossover on the whole chromosomes. In this case, we may select any a € [0,1]
without the feasible range computation due to properties of convex spaces.



Finally, we need to discuss handling the possible additional constraints: 1y, = 0 and
Mko—1 = 1, arising in data reduction when specific sequences of signs are detected (see
section 2). A possible approach would be to additionally amend our operators to deal
with these constraints. However, a much simpler and uniform approach is to learn in-
stead the sequence that excludes such boundary points, while only using the original
sequence to evaluate the chromosomes. For example, suppose that after data reduction
the following constraints hold: 0 =ny < m; ... Ng—1 < 1. In this case, the algo-
rithm is run with a virtual vector 1y, ..., nk,—1 that is to satisfy the general constraint:
0 < m ... < 7Mge—1 < 1, while the chromosomes are evaluated as if the solution
vector were (0,7,...,7k—1). This way we not only reduce the search space but also
easily preserve integrity of the operators.

3.2.1. Initialization

Because of general lack of information on the function being sought, we decided to use
random initialization according to the following algorithm: generate a vector of length kg
initialized with random values on the range [0, 1] and then sort the entries. Again, this
length may be decreased by one or two if the additional equality constraints are imposed.

3.2.2. Algorithm

The algorithm follows that of the classical genetic algorithm. First, a population of
a fixed size (normally 50) is initialized and evaluated. Then, the iterative simulation
begins. At each iteration, first stochastically better samples are selected with chances
proportional to their qualities as the sought solutions. Then, our operators are applied
to some chromosomes of the newly selected population. These applications are stochastic
and based on some fixed probabilities assigned to different operators. In general, these
probabilities may be adaptable as well. We did not experiment with these, nor we tried
to evaluate the applicability of different operators here. After these changes occur, the
new chromosomes are reevaluated, and the iterative cycle continues. It stops when a
chromosome of some desired quality is found, assuming we have such global criteria,
or when some resources are exhausted (e.g., allowed time has elapsed). Notice that an
important feature of this algorithm is that it can return the currently found optimum at
any time.

4. EXPERIMENTS AND RESULTS

For testing the algorithm, we decided to use three artificial data sets generated according
to some commonly known distributions: stepwise, logistic, and exponential. In all cases,
we used a single value for 3, (=—1), ¢o(t) = 0.02¢, and z; as i.i.d. Bernoulli random
variables with P(z; = 1) = 1/2. The assumed A(¢) distributions were as follows:

1. Stepwise A(t) =0 if t < 0 and 1 otherwise. We used 6 = 2.

2. Logistic A(t) = % We used a = 5 and w = 1.

3. Exponential A(t) = 1 — e*t. We used w = —0.25.

For the first two test cases, we generated artificial 300 data points, and in both cases
the data reduction technique (see section 2) yielded discretization vectors (with 66 and



69 values) that had the additional constraints: 0 = 7 and 7,1 = 1. For the last
case, we generated artificial 600 data points. Here, the data reduction technique pro-
duced discretization vector of length 141, with only one additional constraint on the
right: ng,—1 = 1.

To establish some reference solutions, we solved each of these problems assuming that
we knew all of the parameters of the data generation process, the functions and their
parameters, and selected the ¢ values that corresponded to those data points selected into
the reduced data set. With those values, we computed the corresponding 7(¢) and then
used these to find the value F'(n(t)). The optima generated in this way are presented in
table 2, and in figure 1 we show the functions as discretely represented by the data. Be-
cause the limited number of data points may not perfectly fit the distribution from which
the data was generated, this approach does not guarantee finding an optimal solution.
Nevertheless, we found it still much better than a simple parametric method that would
only assume the knowledge of the function and was to maximize the objective function
by adjusting the parameters only.

Table 2
Tests summary.
Test case Number of Length of of Generated From data
data points discretized vector maximum maximum
Stepwise 300 66 -1391.3938 -1391.4994
Logistic 300 69 -1408.1364 -1410.8669
Exponential 600 141 -3225.1811 -3229.1907

Finally, we ran our algorithm on these three cases and observed both the generated
vectors and their quality. In this case, we did not make any assumptions about the shape
of the solution except for the constraints. The results are combined in table 2 and the
derived discretized function are presented in figure 2. To our surprise, our algorithm found
the best optimal values. These optima correspond to quite disturbed functions, as seen in
figure 2. Given this, we may argue that it would be impossible for any parametric method,
especially those not assuming the knowledge of the type of the function, to generate these
solutions.

For all cases, our algorithm ran for 5,000 iterations, which took about two hours on a
SPARCstation2. However, as we show in table 3, our algorithm could find high quality
solutions after quite fewer iterations — the remaining ones were used to fine-tune the
solutions. For example, only ten iterations on the logistic data were sufficient to generate
a solution better than any of the two reference solutions.

5. CONCLUSIONS

We presented here an algorithm for survival analysis in biostatistics. The problem it-
self can be described as a numerical optimization problem with highly complex objective
function and fairly complex linear constraints. The algorithm is based on genetic algo-
rithms, but differs by the operators utilized. Our operators are designed to be closed
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Figure 1. Discretized functions directly recovered from data under the assumption of
precisely knowing the generation functions.
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Figure 2. Discretized functions found by the algorithm.

in the inequality—constraints—restricted convex space. This guarantees only feasible so-
lutions to be generated and dramatically reduces the search space. Additional dramatic
search space reduction is achieved by detecting and removing the equality constraints a
priori.

The experiments presented here indicate that appropriately modified genetic algorithms
can be successfully used for such complex problems, which otherwise cannot be solved
due to high nonlinearity, large dimensionality, and highly constrained structure. Since
the algorithm uses the same mechanisms as genetic algorithms (except for operators), it
is also a potential candidate for parallel implementations.

In these experiments we assumed the [ parameter was fixed and scalar. The next step
would be to relax this assumption and let this vector value be found along with the other
values. Combining unknown ( and equality removal seems contradictory and troublesome
since the data reduction process depends on the [ value. However, for many practical
problems, like those considered here, x; € {0,1}. Then, only a change in the sign of
invalidates the reduction. Initial experiments suggest that this observation leads to a high



Table 3
Solutions found after fewer iterations.

Number of iterations Found optimum CPU time
10 -1410.2786 15.5 sec
50 -1408.9285 64.2 sec
500 -1408.3609 606.6 sec
5000 -1408.1364 5934.2 sec

quality general algorithm capable of optimizing both the function A and E simultaneously.
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